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E. Rulikowska-Zarȩbska, L. Suszycki, D. Szuba
Faculty of Physics and Nuclear Techniques, Academy of Mining and Metallurgy, Cracow, Poland j

A. Kotański
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Hamburg University, II. Institute of Exp. Physics, Hamburg, Germany c

R. Goncalo, K.R. Long, D.B. Miller, A.D. Tapper, R. Walker
Imperial College London, High Energy Nuclear Physics Group, London, UK o

U. Mallik
University of Iowa, Physics and Astronomy Department, Iowa City, USA p

P. Cloth, D. Filges
Forschungszentrum Jülich, Institut für Kernphysik, Jülich, Germany
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M. Barbi,F. Corriveau, D.S. Hanna, A. Ochs, S. Padhi, M. Riveline, D.G. Stairs, M. Wing
McGill University, Department of Physics, Montréal, Québec, Canada a, b
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L. Iannotti24, B.Y. Oh, J.R. Okrasiński, W.S. Toothacker, J.J. Whitmore
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Abstract. The e+-jet invariant mass spectrum produced in the reaction e+p → e+X has been studied at
a center-of-mass energy of 300 GeV. The data were collected using the ZEUS detector operating at the
HERA collider, and correspond to an integrated luminosity of 47.7 pb−1. The observed mass spectrum
is in good agreement with Standard Model expectations up to an e+-jet mass of 210 GeV. Above this
mass, some excess is seen. The angular distribution of these events is typical of high-Q2 neutral current
events and does not give convincing evidence for the presence of a narrow scalar or vector state. Limits
are presented on the product of cross section and branching ratio for such a state and are interpreted as
limits on leptoquark or R-parity-violating squark production. Specific leptoquark types are ruled out at
95% confidence level for coupling strength λ = 0.3 for masses between 150 and 280 GeV.
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1 Introduction

The e+-jet mass spectrum in e+p scattering has been in-
vestigated with the ZEUS detector at HERA. An excess of
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events relative to Standard Model expectations has pre-
viously been reported by the H1 [1,2] and ZEUS [3,4]
collaborations in neutral current deep inelastic scattering
at high x and high Q2. These events contain high-mass
e+-jet final states. Several models have been discussed [5]
as possible sources of these events, including leptoquark
production [6] and R-parity-violating squark production
[7]. This paper presents an analysis of ZEUS data specifi-
cally aimed at searching for high-mass states decaying to
e+-jet.

Candidate events with high transverse energy, an iden-
tified final-state positron, and at least one jet are selected.
The measured energies (E′

e, Ej) and angles of the final-
state positron and the jet with highest transverse momen-
tum are used to calculate an invariant mass

M2
ej = 2E′

eEj · (1− cos ξ) , (1)

where ξ is the angle between the positron and jet. The
angle between the outgoing and incoming positron in the
e+-jet rest frame, θ∗, is also reconstructed using the mea-
sured energies and angles. No assumptions about the pro-
duction process are made in the reconstruction of either
Mej or θ∗.

The search was performed using 47.7 pb−1 of data col-
lected in the 1994-1997 running periods. In the follow-
ing, expectations from the Standard Model, leptoquark
production and R-parity-violating squark production are
summarized. After a discussion of the experimental con-
ditions, the analysis is described and the Mej and cos θ∗
distributions presented. Since these distributions do not
show a clear signal for a narrow resonance, limits on the
cross section times branching ratio are extracted for the
production of such a state. Limits are also presented in
the mass versus coupling plane which can be applied to
leptoquark and squark production.

2 Model expectations

High-mass e+-jet pairs, produced in the Standard Model
(SM) via neutral current (NC) scattering, form the princi-
pal background to the search for heavy states. This process
is reviewed first. Leptoquark (LQ) production and squark
production in R-parity-violating (�RP ) supersymmetry are
used as examples of physics beyond the SM that could gen-
erate the e+-jet final state. The diagrams for NC and LQ
processes are shown in Fig. 1. The squark production dia-
grams are similar to the LQ diagrams, but different decay
modes are possible, as discussed below.

2.1 Standard model expectations

The kinematic variables used to describe the deep inelastic
scattering (DIS) reaction

e+p → e+X

e+ e+

γ

q q

p

a)

e+ e+

Z0

q q

p

b)

e+

q

p

LQ
e+

q

c)

e+

q

p

LQ

q

e+

d)

Fig. 1a–d. Diagrams for NC scattering via a photon exchange
and b Z0 exchange. The leptoquark diagrams for the same ini-
tial and final states are c s-channel LQ production for fermion
number F = 0 LQ and d u-channel LQ exchange for an F = 2
LQ

are

Q2 = −q2 = −(k − k′)2 , (2)

y =
q · P
k · P and (3)

x =
Q2

2q · P , (4)

where k and k′ are the four-momenta of the incoming
and outgoing positron, respectively, and P is the four-
momentum of the incoming proton. The center-of-mass
energy is given by s = (k + P )2 ≈ (300 GeV)2. The
NC interaction occurs between the positron and a parton
(quark) inside the proton (see Fig. 1). The production of
the large e+-jet masses of interest requires high-x-partons,
where the valence quarks dominate the proton structure.

In leading-order electroweak theory, the cross section
for the NC DIS reaction can be expressed as [8]

d2σ(e+p)
dxdy

=
2πα2

sx2y2

[
Y+F2 − Y−xF3 + y2FL

]
(5)

with Y± = 1± (1− y)2 and α the fine structure constant.
The contribution from the longitudinal structure function,
FL, is expected to be negligible in the kinematic range
considered here.

The x dependence of the NC cross section is very steep.
In addition to the explicit 1/x2 factor, the structure func-
tions F2 and xF3 are dominated at large x by valence-
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quark densities that fall quickly for x > 0.3. The y de-
pendence of the cross section is dominated by the 1/y2

term. The structure functions vary slowly with y at fixed
x. The uncertainty in the NC cross section predicted by 5
is dominated by the uncertainty in the structure functions
(parton densities), and is small, about 5% at the high-x
and moderate-y ranges of this analysis [4]. The quantity
of interest in this paper is the e+-jet cross section, which
is sensitive to QCD corrections. The uncertainty arising
from these corrections has been estimated to be small for
this analysis.

For DIS or LQ events produced via the diagrams shown
in Fig. 1 (i.e. assuming no QED or QCD radiation), the
mass of the eq system is related to x via

M2 = sx (6)

and θ∗ is related to y via

cos θ∗ = 1− 2y . (7)

The steeply falling x and y dependences of DIS events
will therefore produce distributions falling sharply with
mass and peaking towards cos θ∗ = 1.

2.2 Leptoquark production and exchange

Leptoquark production is an example of new physics that
could generate high-mass e+-jet pairs. The set of lepto-
quarks with SU(3) × SU(2) × U(1)-invariant couplings
has been specified [6]. Only LQs with fermion number
F = L + 3B = 0 are considered here, where L and B
denote the lepton and baryon number, respectively. These
leptoquarks are listed in Table 1 together with some of
their properties. The F = 0 LQs have higher cross sec-
tions in e+p scattering than e−p scattering since in the
e+p case a valence quark can fuse with the positron.

In principle, additional LQ types can be defined [9]
which depend on the generations of the quarks and leptons
to which they couple. Only LQs which preserve lepton
flavor and couple to first-generation quarks are considered
in this analysis.

As shown in Fig. 1, leptoquark production can gener-
ate an s-channel resonance provided mLQ <

√
s. Contri-

butions to the e+p cross section would also result from
u-channel exchange and interference of LQ diagrams with
photon and Z0 exchange. The cross section in the presence
of a leptoquark can be written as

d2σ(e+p)
dxdy

=
d2σNC

dxdy
+
d2σInt

u/NC

dxdy
+
d2σInt

s/NC

dxdy

+
d2σLQ

u

dxdy
+
d2σLQ

s

dxdy
. (8)

The first term on the right-hand side of 8 represents the
SM contribution discussed previously. The second (third)
term arises from the interference between the SM and u-
channel (s-channel) LQ diagram, and the fourth (fifth)

Table 1. The F = 0 leptoquarks that can be produced at
HERA. The LQ species are divided according to their spin
(S for scalar and V for vector), their chirality (L or R) and
their weak isospin (0, 1/2, 1). The leptoquarks S̃ and Ṽ differ
by two units of hypercharge from S and V , respectively. In
addition, the electric charge, q, of the leptoquarks, the produc-
tion channel, as well as their allowed decay channels assuming
lepton-flavor conservation, are displayed. The quantum num-
bers and decay channels correspond to an electron-type LQ.
For positrons, the corresponding anti-leptoquarks have the sign
of the electric charge reversed, the helicity of the incoming lep-
ton reversed and antiquarks are replaced by the corresponding
quark. The nomenclature follows the Aachen convention [10]

LQ species q Production Decay Branching ratio

SL
1/2 -5/3 eLū eū 1

SR
1/2 -5/3 eRū eū 1

-2/3 eRd̄ ed̄ 1
S̃L

1/2 -2/3 eLd̄ ed̄ 1
V L

0 -2/3 eLd̄ ed̄ 1/2
νeū 1/2

V R
0 -2/3 eRd̄ ed̄ 1

Ṽ R
0 -5/3 eRū eū 1

V L
1 -5/3 eLū eū 1

-2/3 eLd̄ ed̄ 1/2
νeū 1/2

term represents the u-channel (s-channel) LQ diagram
alone. The additional contributions to the SM cross sec-
tion depend on two parameters: mLQ, and λR or λL, the
coupling to e+L,R and quark. Leptoquarks of well-defined
helicity (λR · λL = 0) are assumed for simplicity in the
limit-setting procedure, and one species of LQ is assumed
to dominate the cross section. The cos θ∗ dependence varies
strongly for the different terms: it is flat for scalar-LQ pro-
duction in the s channel, and for vector-LQ exchange in
the u channel, while it varies as (1+cos θ∗)2 for vector-LQ
production in the s channel or scalar-LQ exchange in the
u channel. The interference terms produce a cos θ∗ depen-
dence which is steeper due to the sharply peaking cos θ∗
distribution in NC DIS.

In general, the s-channel term dominates the addi-
tional contributions to the SM cross section if mLQ <

√
s,

the coupling λ is small, and the LQ is produced from a
quark rather than an antiquark. However, there are con-
ditions for which the other terms can become significant,
or even dominant [11], leading to important consequences
for the expected mass spectra and decay angular distribu-
tions. The u-channel and interference terms cannot pro-
duce a resonance peak in the mass spectrum and the an-
gular distributions from such terms can behave more like
those of NC deep inelastic scattering. Limits are presented
in this paper for narrow-width LQ and under conditions
for which the s-channel term dominates.
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The width of a LQ depends on its spin and decay
modes, and is proportional tomLQ times the square of the
coupling. In the narrow-width approximation, the LQ pro-
duction cross section is given by integrating the s-channel
term [6]:

σNWA = (J + 1)
π

4s
λ2q(x0, µ) (9)

where J represents the spin of the LQ, q(x0, µ) is the quark
density evaluated at x0 = m2

LQ/s and with the scale µ =
m2

LQ. In the limit-setting procedure (Sect. 8), this cross
section was corrected for expected QED and QCD (for
scalar LQ only) radiative effects. The QCD corrections
[12] enhance the cross section by 20 - 30% for the F = 0
LQ considered here. The effect of QED radiation on the
LQ production cross section was calculated and was found
to decrease the cross section by 5-25% as mLQ increases
from 100 → 290 GeV.

2.3 R-parity-violating squark production

In the supersymmetry (SUSY) superpotential, R-parity-
violating terms of the form λ′

ijkL
i
LQ

j
LD

k

R [7] are of partic-
ular interest for lepton-hadron collisions. Here, LL, QL,
and DR denote left-handed lepton and quark doublets
and the right-handed down-type quark-singlet chiral su-
perfields, respectively. The indices i, j, and k label their
respective generations.

For i = 1, which is the case for ep collisions, these
operators can lead to ũ- and d̃-type squark production.
There are 9 possible production couplings probed in e+p
collisions, corresponding to the reactions [13]

e+ + ūj → ˜̄dk , (10)

e+ + dk → ũj . (11)

For production and decay via the λ′
1jk coupling, squarks

behave like scalar leptoquarks and the final state is indis-
tinguishable, event by event, from Standard Model neutral
and charged current events. However, as for the scalar lep-
toquarks, the angular distributions of the final-state lep-
ton and quark will be different and this fact can be ex-
ploited in performing searches. Limits derived for scalar
LQ production can then be directly related to limits on
squark production and decay via λ′

ijk. In addition to the
Yukawa couplings, gauge couplings also exist whereby q̃
can decay by radiating a neutralino or chargino which can
subsequently decay. The final-state signature depends on
the properties of the neutralino or chargino. The search for
such decay topologies from a squark is outside the scope
of this analysis.

3 Experimental conditions

In 1994-97, HERA operated with protons of energy Ep =
820 GeV and positrons of energy Ee = 27.5 GeV. The
ZEUS detector is described in detail elsewhere [14]. The

main components used in the present analysis were the
central tracking detector (CTD) positioned in a 1.43 T
solenoidal magnetic field and the uranium-scintillator sam-
pling calorimeter (CAL). The CTD was used to estab-
lish an interaction vertex with a typical resolution along
(transverse to) the beam direction of 0.4 (0.1) cm. It
was also used in the positron-finding algorithm that as-
sociated a charged track with an energy deposit in the
calorimeter. The CAL was used to measure the positron
and hadronic energies. The CAL consists of a forward part
(FCAL), a barrel part (BCAL) and a rear part (RCAL),
with depths of 7, 5 and 4 interaction lengths, respectively.
The FCAL and BCAL are segmented longitudinally into
an electromagnetic section (EMC), and two hadronic sec-
tions
(HAC1,2). The RCAL has one EMC and one HAC sec-
tion. The cell structure is formed by scintillator tiles; cell
sizes range from 5×20 cm2 (FEMC) to 24.4×35.2 cm2 at
the front face of a BCAL HAC2 cell. The light generated
in the scintillator is collected on both sides of the module
by wavelength-shifter bars, allowing a coordinate measure-
ment based on knowledge of the attenuation length in the
scintillator. The light is converted into an electronic signal
by photomultiplier tubes. The cells are arranged into tow-
ers consisting of 4 EMC cells, a HAC1 cell and a HAC2
cell (in FCAL and BCAL). The transverse dimensions of
the towers in FCAL are 20× 20 cm2. One tower is absent
at the center of the FCAL and RCAL to allow space for
passage of the beams. The outer boundary of the inner
ring of FCAL towers, used to define a fiducial cut for the
jet reconstruction, defines a box of 60× 60 cm2.

Under test beam conditions, the CAL has energy res-
olutions of σ/E = 0.18/

√
E for positrons hitting the cen-

ter of a calorimeter cell and σ/E = 0.35/
√
E for sin-

gle hadrons, where energies are in GeV. In the ZEUS
detector, the energy measurement is affected by the en-
ergy loss in the material between the interaction point
and the calorimeter. For the events selected in this anal-
ysis, the positrons predominantly strike the BCAL, while
the jets hit the FCAL. The in-situ positron-energy resolu-
tion in the BCAL has been determined to average σ/E =
0.32/

√
E⊕0.03 while the jet-energy resolution in the FCAL

averages σ/E = 0.55/
√
E⊕0.02. The jet-energy resolution

was determined by comparing reconstructed jet energies
in the calorimeter with the total energy of the particles in
the hadronic final-state using Monte Carlo simulation, and
therefore includes small contributions from the jet-finding
algorithm.

In the reconstruction of the positron and jet energies,
corrections were applied for inactive materials located in
front of the calorimeter and for non-uniformities in the
calorimeter response [4]. For the high energies important
in this analysis, the overall energy scale is known to 1%
for positrons in BCAL and 2% for hadrons in FCAL and
BCAL. The electromagnetic energy scale was determined
by a comparison with momentum measurements in the
central tracking detector (using lower-energy electrons and
positrons). Its linearity was checked with energies recon-
structed from the double angle (DA) method [15]. The
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hadronic-energy scales in the FCAL and BCAL were de-
termined by using transverse-momentum balance in NC
DIS events.

The angular reconstruction was performed using a
combination of tracking and calorimeter information.
From Monte Carlo studies, the polar-angle resolutions
were found to be 2.5 mrad for positrons and approximately
(220/

√
E− 4) mrad for jets with energies above 100 GeV.

The luminosity was measured from the rate of the
bremsstrahlung process e+p → e+pγ [16], and has an un-
certainty of 1.6%.

The ZEUS coordinate system is right-handed and cen-
tered on the nominal interaction point, with the Z axis
pointing in the direction of the proton beam (forward)
and the X axis pointing horizontally toward the center of
HERA. The polar angle θ is defined with respect to the Z
axis.

4 Event selection

The events of interest with large e+-jet mass contain a
final-state positron at a large angle and of much higher
energy than that of the incident positron beam, as well as
one or more energetic jets. The only important SM source
of such events is NC scattering with large Q2. Other po-
tential backgrounds, such as high transverse-energy (ET )
photoproduction, were determined to be negligible.

The following requirements selected events of the de-
sired topology:

– A reconstructed event vertex was required in the range
|Z| < 50 cm.

– The total transverse energy, ET , was required to be at
least 60 GeV.

– An identified [4] positron was required with energy
E′

e > 25 GeV, located either in the FCAL or BCAL.
The positron was required to be well-contained in the
BCAL or FCAL and not to point to the BCAL/FCAL
interface, at approximately 31◦ < θ < 36◦. Positrons
within 1.5 cm of the boundary between adjacent BCAL
modules, as determined by tracking information, were
also discarded to remove showers developing in the
wavelength-shifter bars.

– A hadronic jet with transverse momentum P j
T >15GeV,

located in a region of good containment, was required.
The jets were reconstructed using the longitudinally
invariant kT -clustering algorithm [17] in the inclusive
mode [18]. Only jets with a reconstructed centroid out-
side the inner ring of FCAL towers were considered. In
events where multiple jets were reconstructed, the jet
with highest transverse momentum was used. After all
cuts, 12% of the events had more than one jet, both in
the data and Monte Carlo simulation (see below).

The ET cut, the jet-containment cut and the positron-
containment cut define the available kinematic region for
further analysis, as shown in Fig. 2. The jet containment
cut, in particular, limits the values of cos θ∗ that can be
measured at the highest e+-jet masses. Because most such

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Mass(GeV)
co

s(
θ*

)

Et cut

BCAL/FCAL in
ter

face

jet containment

Fig. 2. The acceptance region (unshaded) in the cos θ∗ versus
Mej plane allowed by the ET , jet-containment and positron-
fiducial-volume cuts, assuming eq → eq scattering at the nom-
inal interaction point. No detector simulation is included

events have cos θ∗ near 1, the acceptance for NC DIS
events (with ET > 60 GeV) falls below 10% for masses
beyond 220 GeV. In the region allowed by the cuts shown
in Fig. 2, the acceptance is typically 80%.

A total of 7103 events remained after applying all cuts,
compared to 6949±445 events predicted by the NC Monte
Carlo simulation based on the measured luminosity of
47.7 pb−1 (the sources of uncertainty on the expected
number of events are described in Sect. 7.1). The ET

distributions for data and NC simulation are compared
in Fig. 3a. The positron transverse-momentum (P e

T ) spec-
trum, jet transverse-momentum (P j

T ) spectrum and the
ratio P e

T /P
h
T , where P

h
T is the transverse momentum of

the hadronic system, are shown in Figs. 3(b-d), respec-
tively. The missing transverse momentum, �PT , and the
longitudinal momentum variable, E − PZ , are compared
in Figs. 3(e,f). The global properties of the events are well
reproduced by the simulation.

5 Event simulation

The SM deep inelastic scattering events were simulated us-
ing the HERACLES 4.5.2 [19] program with the DJANGO
6 version 2.4 [20] interface to the hadronization programs.
In HERACLES, corrections for initial- and final-state elec-
troweak radiation, vertex and propagator corrections, and
two-boson exchange are included. The NC DIS hadronic fi-
nal state was simulated using the MEPS model of LEPTO
6.5 [21], which includes order αS matrix elements and
models of higher-order QCD radiation. As a systematic
check, the NC final state was simulated using the color-
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Fig. 3a–f. Comparison of data (points) with Standard Model
expectations (histograms) for selected distributions: a total
transverse energy, ET ; b positron transverse momentum, P e

T ;
c jet transverse momentum, P j

T ; d the ratio of the positron to
hadron transverse momenta, P e

T /P h
T , e the missing transverse

momentum, �PT , and f the longitudinal-momentum variable,
E − PZ , for the event

dipole model of ARIADNE 4.08 [22]. The CTEQ4 parton-
distribution set [23] was used to evaluate the expected
number of events from NC DIS scattering.

The leptoquark events were generated using PYTHIA
6.1 [24]. This program takes into account the finite width
of the LQ, but only includes the s-channel diagrams.
Initial- and final-state QCD radiation from the quark and
the effect of LQ hadronization before decay are taken into
account, as are initial- and final-state QED radiation from
the positron.

The generated events were input into a GEANT-based
[25] program which simulated the response of the ZEUS
detector. The trigger and offline processing requirements
applied to the data were applied to the simulated events.
The luminosity of the NC Monte Carlo samples ranges
from 46 pb−1 at Q2 = 400 GeV2 to 7.3 · 106 pb−1 at
Q2 = 50000 GeV2.

6 Mass and θ∗ reconstruction

The mass of each e+-jet pair was reconstructed from the
measured energies and angles of the positron and jet as
described by 1. This formula makes no correction for the
finite jet mass. Possible mass shifts and the resolutions for
resonant lepton-hadron states were estimated from
PYTHIA. Narrow scalar LQ events in the mass range
150 − 290 GeV were simulated. The mean mass for re-
constructed events was found to be within 6% of the gen-
erated value, while the peak position as determined by a
Gaussian fit was typically lower than the generated value
by only 1%. The average mass resolution, determined from
a Gaussian fit to the peak of the reconstructed mass spec-
trum, ranged from 5.5% to 3% for masses from 150 to
290 GeV. The RMS of the distribution was typically twice
as large.

The positron scattering angle in the e+-jet rest frame,
θ∗, was reconstructed as the angle between the incoming
and outgoing positron directions in this frame. These di-
rections were determined by performing a Lorentz trans-
formation using the measured positron and jet energies
and angles in the laboratory frame. The resolution in cos θ∗
near | cos θ∗| = 1, as determined from a Gaussian fit, was
near 0.01, degrading to 0.03 as | cos θ∗| decreases. The shift
in cos θ∗ was less than 0.01 for both the NC MC and the
leptoquark MC.

In order to determine limits on leptoquark and squark
production, the mass of the electron-hadron system was
reconstructed by the constrained-mass method. This me-
thod reconstructs the e+-hadron mass as

MCJ =
√
2Ee(E + PZ) (12)

where (E + PZ) is the sum of the energy and PZ con-
tributions from the positron and all jets satisfying P j

T >
15 GeV and pseudorapidity ηj < 3 (with the highest PT

jet required to be outside the FCAL inner ring). The ηj

cut removes contributions from the proton remnant. The
constraints �PT = 0 and E−PZ = 2Ee, which are satisfied
by fully contained events, have been assumed in arriv-
ing at this equation. When using this mass-reconstruction
method, events with measured E − PZ < 40 GeV were
removed to avoid large initial-state QED radiation.

The MCJ method gave, on average, improved reso-
lution over the Mej method for narrow LQ MC events.
The improved resolution occurred at smaller cos θ∗ (for
cos θ∗ ≈ 0 the mass resolution determined from a Gaus-
sian fit to the reconstructed mass distribution for mLQ =
200 GeV was about 1.5% in the MCJ method and 3% for
theMej method); at the larger cos θ∗ values where NC DIS
events are concentrated, the resolutions of the two meth-
ods were similar (about 3% for mLQ = 200 GeV). The
MCJ method relies on constraints which do not necessar-
ily apply to a resonant state whose properties cannot be
anticipated in detail. We therefore choose to use the Mej

method as our primary search method. The MCJ method
is used in the limit-setting procedure.
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ing the event selections. The events at high x and y described
in a previous paper [3] are shown as open circles

7 Mej and cos θ∗ distributions

The reconstructed values of Mej are plotted versus cos θ∗
for the selected events in Fig. 4. Most of the events are
concentrated at large cos θ∗ and small mass, as expected
from Standard Model NC scattering. The five events in-
dicated as open circles are from data taken in 1994-96,
with total luminosity 20 pb−1. They were the subject of a
previous publication [3]. In this earlier analysis, the kine-
matic variables were reconstructed with the DA method.
The five events also stand out with the Mej reconstruc-
tion technique. The average value ofMej for these events is
224 GeV, or 7 GeV less than the corresponding mass calcu-
lated previously viaM =

√
s · xDA, where xDA is the esti-

mator of Bjorken-x calculated with the DA method. This
mass shift is compatible with expectations based on reso-
lution and initial state radiation effects. With the present
luminosity of 47.7 pb−1, 7 events are observed in the re-
gion ofMej > 200 GeV and cos θ∗ < 0.5, where 5.0 events
are expected.

The Mej spectrum for events with Mej > 100 GeV
is shown in Fig. 5a on a logarithmic scale. The high-
mass part of the spectrum is shown on a linear scale in
the inset. The predicted number of events (Npred) from
NC processes is shown as the histogram. The ratio of the
measured mass spectrum to the expectation is shown in
Fig. 5b. The shaded band indicates the systematic uncer-
tainty on the expectations.

7.1 Systematic uncertainties

The uncertainty on Npred varies with mass from 7% at
100 GeV up to 30% at 250 GeV. The most important
uncertainties are on the energy scale and the jet position.
The NC DIS cross section given in 5 (neglecting FL) can be
rewritten in terms of the e+q invariant mass, M , and the
polar angle of the outgoing struck quark in the laboratory
frame, γ:

d2σ(e+p)
dMdγ

=
32πα2E2

e sin γ
M5(1− cos γ)2

[Y+F2 − Y−xF3 ] . (13)

The mass dependence is very steep. In addition to the
explicit M−5 dependence, there is also a strong suppres-
sion of high masses implicit in the structure functions.
An incorrect energy scale will produce a shift in the mass
spectrum and potentially a significant error in the num-
ber of expected events at a given mass. The dependence
on the quark angle is also steep, approximately γ−3 at
small γ. The number of events passing the jet fiducial
cut is therefore strongly dependent on the accuracy of the
jet position reconstruction. The jet fiducial-volume cut re-
quires the highest-PT jet to point outside the inner ring
of FCAL towers. Many distributions from data and MC
were compared to search for possible systematic biases.

The dominant sources of uncertainty are itemized be-
low in order of decreasing importance:

1. Knowledge of the calorimeter energy scales:
The scale uncertainties discussed in Sect. 3 are 1% for
BCAL positrons and 2% for hadrons, leading to an un-
certainty of 5(18)% in Npred at Mej = 100(210) GeV.

2. Uncertainties in the simulation of the hadronic energy
flow, including simulation of the proton remnant, the
energy flow between the struck quark and proton rem-
nant, and possible detector effects in the innermost
calorimeter towers:
Many distributions of data and MC were compared
and no important systematic differences were found.
Figure 6 shows the fraction of the jet energy in the
inner ring of FCAL towers associated with the highest
PT jet as a function of ηj . This is shown for all events
in Fig. 6a, as well as for those with Mej > 210 GeV
in Fig. 6b. For the highest ηj values considered, this
ratio is about 20%. The energy located in the inner-
most towers of the FCAL and not associated with the
highest PT jet is shown in Fig. 6c,d, and compared
to the MC simulation. No large differences are seen
between data and MC (the lowest η bin in Fig 6d con-
tains only five data events). The innermost towers of
the FCAL have a larger uncertainty in the energy scale
than the rest of the FCAL owing to their slightly dif-
ferent construction and proximity to the beam. The
energy in these cells has been varied by ±10%. As a
test of the simulation of the forward energy flow, the
ARIADNE MC has been used instead of the LEPTO
MC. These tests yielded variations in Npred of 13% at
Mej = 210 GeV.
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Fig. 5. a Comparison of observed events
(points) and SM expectations (histogram)
for the reconstructed e+-jet invariant
mass. The inset shows the region with
Mej > 180 GeV on a linear scale. b The ra-
tio of the number of observed events to the
Standard Model expectations. The shaded
band shows the systematic uncertainty in
the predicted number of events. The error
bars on the data points are calculated from
the square root of the number of events in
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3. Uncertainty in the parton density functions:
The parton density functions were estimated as in [4],
and led to an uncertainty of 5% in Npred at Mej =
210 GeV.

4. Uncertainties in the acceptance:
The alignment of the FCAL was determined to bet-
ter than 5 mm, and various jet position reconstruction
algorithms were compared. These studies yielded an
uncertainty of 2% in Npred.

5. Uncertainties in the energy resolution functions:
These were studied by comparing tracking information
with calorimeter information for individual events, as
well as by comparing different reconstruction methods.
The MC energies were smeared by additional amounts
to represent these uncertainties, leading to a variation
of less than 5% in Npred.

Other uncertainties include positron finding efficiency,
luminosity determination, vertex simulation, multijet pro-
duction rates, and hadronization simulation. These were
found to be small in comparison to the items listed above.
The overall systematic uncertainty was obtained by sum-
ming the contributions from all these sources in quadra-
ture.

7.2 Discussion

The data in Fig. 5 are in good agreement with the SM
expectations up to Mej ≈ 210 GeV. Some excess is seen
at higher masses. For Mej > 210 GeV, 49 events were ob-
served in the data, while 24.7 ± 5.6 events are expected.
A careful study of individual events in this mass region
uncovered no signs of reconstruction errors. Rather, the
events always contain clear examples of a high-energy posi-
tron (typically 70 GeV) near 90◦ and a high-energy jet
(typically 400 GeV) in the forward direction (2 events
have a second jet, in accord with NC DIS Monte Carlo
expectations). The distributions shown in Fig. 3 for all
the data are restricted to the events with Mej > 210 GeV
in Fig. 7. Whereas the shapes of the distributions are sim-
ilar, the data lie systematically above the MC, which is
normalized to the integrated luminosity.

The events with large Mej have characteristics simi-
lar on average to NC DIS events. In particular, the cos θ∗
projection of the events with Mej > 210 GeV is shown in
Fig. 8 and compared to the MC expectations for neutral
current DIS (solid histogram). The expectations for nar-
row s-channel scalar- and vector-LQ production are also
shown for comparison. For F = 0 LQs with λ < 1, the
u-channel and interference terms would not significantly
affect these expectations. The shape of the data and NC
MC cos θ∗ distributions are qualitatively similar, peaking
at high values of cos θ∗.
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of η of the jet for a the full sample, and b for those events
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jet, is shown in c for the full sample, and in d for those events
with Mej > 210 GeV. The data are shown as points, while the
NC Monte Carlo predictions are shown as a histogram

In summary, there is some excess of events withMej >
210 GeV above the Standard Model predictions. The prob-
ability of observing such an excess depends strongly on
possible systematic biases. The most important of these
are biases in the energy scales. As a test, many MC ex-
periments were generated where the jet energy scale was
shifted by +2% and the electron energy scale by +1%. A
window of width 3σ(Mej), where σ(Mej) is the mass res-
olution at mass Mej , was moved over the accessible mass
range. For each simulated experiment, the number of ob-
served events within the mass window was compared with
the nominal expectations as a function of Mej , seeking
the excess which gave the largest statistical significance.
The same procedure was applied to the data. As a result,
it was found that 5% of the simulated experiments would
observe, somewhere in the mass spectrum, an excess of
statistical significance at least as large as the one found
in the data. The excess is therefore not statistically com-
pelling. Furthermore, the events have the characteristics of
neutral current scattering. Limits are therefore set on the
production of narrow scalar or vector states, as discussed
below.
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Fig. 7a–f .Comparison of data (points) with Standard Model
expectations (histograms) for selected distributions and requir-
ing Mej > 210 GeV: a total event transverse energy, ET ; b
positron transverse momentum, P e

T ; c jet transverse momen-
tum, P j

T ; d the ratio of the positron to hadron transverse mo-
menta, P e

T /P h
T , e the net (or missing) transverse momentum,

�PT , and f the longitudinal momentum variable, E − PZ , for
the event

8 Limits on narrow scalar and vector states

Limits are set on the production cross section times branch-
ing ratio into positron+jet, σB, for a narrow scalar or
vector state. For definiteness, limits on coupling strength
versus mass for F = 0 leptoquarks are presented, as well
as limits on λ

√
B versus mass for scalar states coupling

to u or d quarks, such as �RP squarks. The limits are ex-
tracted for λ ≤ 1, allowing the use of the narrow-width
approximation assumed in 9.

The MCJ mass reconstruction method was used to set
limits as described in Sect. 6. The positron fiducial cuts
were removed since this method is less sensitive to the
positron-energy measurement, while the cut E − PZ >
40 GeV was applied to reduce radiative effects. The mass
spectrum reconstructed with this technique is shown in
Fig. 9a. In total, 8026 events passed all selection cuts while
7863 events are predicted by the MC.
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The leptoquark MC described in Sect. 5 was used to
determine the event selection efficiency and the acceptance
of the fiducial cuts, as well as to estimate the mass reso-
lution. This MC and the NC background simulation were
used to calculate an optimal bin width, ∆MCJ , for each
MCJ , and optimal cos θ∗ range, cos θ∗ < cos θ∗

cut, to ob-
tain on average the best limits on LQ couplings. The bin
widths were typically 20 GeV. The values of cos θ∗

cut for
setting limits range from 0.5 to 0.9 for vector leptoquarks
with masses between 150−290 GeV, and from 0.1 to 0.9 for
scalar leptoquarks in the same mass range. The mass spec-
trum after applying the optimal cos θ∗ cut for the scalar
search is shown in Fig. 9b. No significant deviations from
expectations are seen after applying this cut.

The 95% confidence level (CL) limits on σB were ob-
tained directly from the observed number of data events
with cos θ∗ < cos θ∗

cut in the particular mass window [26].
The procedure described in [26] was extended to include
the systematic uncertainties in the numbers of predicted
events. This was found to have negligible effect on the
limits. The limits for a narrow scalar or vector state are
shown in Fig. 10. These limits lie between 1 and 0.1 pb as
the mass increases from 150 to 290 GeV.

The 95% CL exclusion limits for different species of
LQ are given in the coupling versus mass plane in Fig. 11.
The limits exclude leptoquarks with coupling strength λ =√
4πα ≈ 0.3 for masses up to 280 GeV for specific types

of F=0 leptoquarks. The H1 collaboration has recently
published similar limits [2]. In Fig. 11, the ZEUS results
are compared to recent limits from OPAL. At LEP [27–



266 The ZEUS Collaboration: Search for resonances decaying to e+-jet in e+p interactions at HERA

10
-2

10
-1

1

150 200 250

10
-2

10
-1

1

150 200 250

ZEUS 1994-97

D
0(

B
=1

.0
)

D
0(

B
=0

.5
)

ZEUS

LEP

SL
1/2 (e

+u)
SR

1/2

S
~ L
1/2 (e

+d)

a)

mLQ(GeV)

λ

λ√
B

(L
Q

→
eq)

ZEUS

LEP

VL
0

VR
0(e+d)

V
~ R

0(e+u)
VL

1

b)

mLQ(GeV)

λ
λ√

B
(L

Q
→

eq)

Fig. 11a,b. Coupling limits as a function
of leptoquark mass for F = 0 leptoquarks.
The results from this analysis are com-
pared to representative limits from LEP
[28] and the Tevatron [31]. The areas above
the ZEUS and LEP curves are excluded,
while the area to the left of the Tevatron
line is excluded for scalar leptoquarks with
the indicated branching ratio to e+jet. The
limits on scalars are shown in a while the
limits on vectors are shown in b

29], sensitivity to a high-mass LQ arises from effects of
virtual LQ exchange on the hadronic cross section. The
HERA and LEP limits are complementary to Tevatron
limits [30,31], which are independent of the coupling λL,R.
The limits by D0 (CDF) extend up to 225 (213) GeV for a
scalar LQ with 100% branching ratio to eq. The D0 limits
are shown as vertical lines in Fig. 11. The Tevatron limits
for vector LQs are model dependent [32], but are expected
to be considerably higher than for scalar LQs.

The ZEUS limits presented in Fig. 11 can also be ap-
plied to any narrow state which couples to a positron and
a u or d quark and with unknown branching ratio to e+-
jet(s). These states correspond to the leptoquark types as
labelled in the figure. For these states, the limits are on
the quantity λ

√
B. Examples of scalar states for which

these limits apply are �RP squarks (e.g.,the limit on the
S̃L

1/2(e
+d) LQ can be read as a limit on the λ′

1j1 R-parity-
violating coupling).

9 Conclusion

Data from 47.7 pb−1 of e+p collisions at a center-of-mass
energy of 300 GeV have been used to search for a res-
onance decaying into e+-jet. The invariant mass of the
e+-jet pair was calculated directly from the measured en-
ergies and angles of the positron and jet. This approach
makes no assumptions about the production mechanism
of such a state.

The observed mass spectrum is in good agreement with
Standard Model expectations up to e+-jet masses of about
210 GeV. Above this mass, some excess is seen. The angu-
lar distribution of these events is typical of high-Q2 neu-
tral current events and does not give convincing evidence
for the presence of a narrow scalar or vector state. By
applying restrictions on the decay angle to optimize sensi-
tivity to a narrow state in the presence of NC background,
limits have been derived on the cross section times decay
branching fraction for a scalar or vector state decaying

into positron and jet(s). These limits can be interpreted,
for example, as limits on leptoquark or R-parity-violating
squark production. Limits on the production of lepto-
quarks and squarks are presented in the coupling strength
versus mass plane. At a coupling strength λ = 0.3, new
states are ruled out at 95% confidence level for masses
between 150 and 280 GeV.
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22. ARIADNE 4: L. Lönnblad, Comput. Phys. Commun. 71
15 (1992)

23. CTEQ Collab., H. L. Lai et al., Phys. Rev. D55 1280
(1997)

24. PYTHIA 6.1, C. Friberg, E. Norrbin and T. Sjöstrand,
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